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Figure 4: A 1 � 3 convolution in (a) unaltered (b) exact, and (c) predictive modes.
In the latter two, the weights and their corresponding input s are reordered.
The white boxes highlight the operations that are cut.

after performing a pre-determined number of MAC operations.
As mentioned, both the threshold and the number of operation
are determined in the SnaPEA software workflow. If the partial
result is less that the threshold, PE can speculatively terminate
the convolution and compute the activation early. That is, the PE
outputs a zero for the current convolution window. To support
this speculative execution, each PE is equipped with a unit called
Predictive Activation Unit (PAU) (See SectionV).

III. COMPUTATION REDUCTION IN SNAPEA

Figure4demonstrates how SnaPEA reduces the computation by
an example of 1� 3 convolution. Figure4aperforms the unaltered
convolution in which all of the MAC operations are performed
and yields “-9” as the output. Figure4billustrates convolution in
the exact mode. In this mode, SnaPEA reorders the weights based
on their sign, and starts the computation with the positive weights.
The computation is terminated after performing only two MAC
operations as the results is already negative, “-3”. The simple sign
check stops the computation. Although the partial sum aftertwo
MAC operations (“-3”) has not reached the final convolutionoutput
(“-9”), it will be converted to zero by the following ReLU operation.
As such, the results is the same as the unaltered convolution.
Therefore, the exact SnaPEA does not change the final output
after ReLU and does not lead to accuracy degradation.

Figure4cillustrates how predictive mode cuts the operations ear-
lier than the exact mode. As shown, after performing the MAC op-
erations on only one weight, SnaPEA predicts that the convolution
value will eventually be negative. Even though the corresponding
partial sum value is positive (“+2”), SnaPEA speculativelytriggers
the ReLU function early with a negative value (e.g., “-1”) and puts
out zero. This speculation reduces the computation from twoin the
exact mode to one. In real-world CNNs, convolution is most often
3D and requires a relatively large number of MAC operations as
depicted in Figure5a. Using these methods, SnaPEA can forgo
a significant number of the MAC operations as illustrated in5b.

IV. SNAPEA SOFTWARE OPTIMIZATION

Significant computation reduction provided by the predictive
mode comes at a price of experiencing loss in the classification
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Figure 5: (a) The unaltered 3D convolution where all the MAC o perations
(bubbles) are carried out. (b) The same convolution with Sna PEA, where a sig-
nificant number of operations are eliminated, delineated b y the white bubbles.

accuracy due to misspeculating positive outputs as negative ones.
To avoid unacceptable loss while maximizing the computation
reduction, the predictive pass in the software part of SnaPEA,
aims to systematically control the degree of speculation by
properly determining the speculation parameters. To determine
the parameters, the predictive pass formulates the problemas a
constrained optimization problem, and designs a greedy algorithm
to solve it. In this section, we first elaborate on the speculation
parameters, and then explain the problem formulation and the
algorithm to determine the parameters.

A. Speculation Parameters

As mentioned in SectionII-A , speculation on the sign of a
convolution output is performed by comparing the partial result
of a set of MAC operations with a threshold value. Therefore,
the threshold value and its associated set of operations arethe
parameters that control the degree of speculation. The threshold is
merely a value that is required to be determined by the software for
the controlled speculation. However, to determine a properset of
operations, the software requires to select the proper weights. One
approach to select the weights would be to sort the weights inde-
scending order of their absolute values, and select those with larger
magnitude as a set of operations for performing the speculation.
In this approach, although the contributions of both positive and
negative weights are taken into account, the classification accuracy
drastically declines. The reason is that selecting the weights with
the larger magnitude ignores the contributions of input values
which are, to a large degree, random and data dependent.

To mitigate the mentioned issue, SnaPEA sorts the weights
in ascending order, partitions them into a number of smaller
groups, and selects the weight with the largest magnitude from
each group. This approach enables even the smallest weightsto
appear in the set of operations for the speculation; consequently,
the smaller weights that may couple with large input values have
an opportunity to contribute to the speculation. In this approach,
to select a proper set of operations, the software only requires to
determine the number of groups. This means that the number of
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groups can be exploited as an indicator of a set of operationsin the
speculation parameters. Accordingly, we denote the speculation
parameters of all kernels in all layers of a CNN as(Th;N), in
whichTh is a list of threshold values andN is a list of the number
of groups for selecting the corresponding operations.

B. Problem Formulation

The problem of finding the speculation parameters (i.e.,(Th;N))
to maximize the computation reduction with an acceptable loss can
be formulated as an optimization problem. In order to formulate
the problem, we measure the computation reduction by subtracting
the number of MAC operations that are performed by SnaPEA
from the one performed by an unaltered CNN. However, since
the number of MAC operations in the unaltered CNN is constant
across various inputs, maximizing the computation reduction
becomes equivalent to minimizing the number of MAC operations
performed by SnaPEA. Accordingly, we define a function that
calculates the number of MAC operations in SnaPEA as follows.

Let od
l;k be the result of a single convolution window obtained

by kernelk in layerl with the speculation parameters Thk
l and Nk

l
for the input imaged. The number of MAC operations to compute
od

l;k can be calculated by the functionOpshown in (1). Let assume
that the reordered weights are stored in a 1D array such that the
Nk

l speculation weights are placed at the beginning of the array
while the remaining positive weights followed by the remaining
negative weights are placed at the end. The function in (1) returns
Nk

l if the value of partial sum after performingNk
l operations (i.e.,

PartialSumNk
l
) is less than the threshold valueThk

l . Otherwise,
the number of operations is determined by checking the sign of
the partial sum value obtained by performing operations with the
negative weights (i.e.,PartialSumw� ). If a negative partial sum
is observed, the function returns the index of the corresponding
negative weight in the array (i.e.,Idxw� ). If none of the above
cases occurs (last part in1), the number of operations is set to the
total number of weights in the kernel. Total number of weights
of the kernel isCin;l � Dk

l � Dk
l , in whichCin;l is the number of

input channels of the layerl, and Dk
l is the kernel width.

Op(od
l;k;Thk

l ;N
k
l )=

8
>><

>>:

Nk
l ; if PartialSumNk

l
� Thk

l ;

Idxw� ; if PartialSumNk
l
> Thk

l andPartialSumw� � 0;

Cin;l � Dk
l � Dk

l ; otherwise
(1)

The amount of computation to produce all the convolution
outputs is the sum of the number of MAC operations required
to produce each individual output. Based on this definition, the
problem is translated into finding the speculation parameters that
minimize total number of MAC operations and meet the constraint
on the accuracy loss, which can be formulated as the following
constrained optimization problem.

Let L be a set of all the layers in a given CNN,Kl a set of all
the kernels in layerl, D an optimization dataset,e an acceptable
accuracy loss,Thk

l andNk
l the speculation parameters of kernelk

of layerl, Od
l;k the outputs of the convolution generated by kernel

k in layerl for the input imaged from D, andAccuracyCNN and
AccuracySnaPEAthe classification accuracy of the CNN and the

Algorithm 1 Finding the threshold value and its associated
number of operations for all kernels in a CNN

1: Inputs: CNN: a CNN model,D: an optimization dataset,
e: Acceptable loss in classification accuracy

2: Outputs: ParamCNN:
Speculation parameters (Th,N) for the CNN

3: // Analyze each kernel individually
4: function K ERNELPROFILING PASS(CNN;D;e)
5: Initialize ParamK[l][k]! /0
6: for 8 layerl in CNN do
7: for 8 kernelk in layerl do
8: for a set of values (th,n)do
9: op, err =Simulate(CNN,D, k, th, n)

10: if err� e then
11: ParamK[l][k].append((th,n,op))
12: Sort ParamK[l][k] based on op
13: return ParamK
14: // Local Optimizer to find a set of params for each layer individually
15: function L OCAL OPTIMIZATION PASS(CNN;D;e;ParamK)
16: for layer l in CNNdo
17: for t in range(0,T)do
18: for k in layer ldo
19: param = ParamK[l][k][t]
20: op, err =Simulate(CNN;D;e;param)
21: if err � e then
22: ParamL[l].append((param,op,err))
23: return ParamL
24: // Parameter tuning to accommodate for cross-kernel effect
25: function ADJUSTPARAM (CNN,ParamCNN,ParamL)
26: for 8 layerl in CNN do
27: for 8 t in range(len(ParamL[l])) do

28: meritL[l][t]=
-(ParamL[l][2]-ParamCNN[l][2])
(ParamL[l][1] � ParamCNN[l][1])

29: l,t = Argmax(meritL)
30: return (l,t)
31: // Global Optimizer to find the parameters for the entire network
32: function GLOBAL OPTIMIZATION PASS(CNN,D;e,ParamL)
33: for 8 layerl in CNN do ParamCNN[l] = ParamL[l][0]
34: err =Simulate(CNN,D,ParamCNN)
35: while err> e do
36: l,t=ADJUSTPARAM(CNN,ParamCNN,ParamL)
37: ParamCNN[l] = ParamL[l][t]
38: remove ParamL[l][t] from ParamL[l]
39: err =Simulate(CNN;D;e,ParamCNN)
40: return ParamCNN
41: Initialize ParamCNN[l]! /0
42: ParamK= K ERNELPROFILING PASS(CNN;D;e)
43: ParamL= L OCAL OPTIMIZATION PASS(CNN;D;e,ParamK)
44: ParamCNN= GLOBAL OPTIMIZATION PASS(CNN;D;e,ParamL)

classification accuracy obtained by SnaPEA, respectively. Now,
(Th;N) can be determined by solving the following problem:

min
Th;N

å
d2D

å
l2L

å
k2Kl

å
o2Od

l;k

Op(o;Thk
l ;N

k
l )

subject to AccuracyCNN� AccuracySnaPEA� e

(2)

C. Finding the Speculation Parameters

In order to solve the optimization problem formulated as (2), we
devise a greedy algorithm (i.e., Algorithm1). The algorithm takes
a CNN, an optimization datasetD, and an acceptable accuracy loss
e and returns a list namedParamCNN that stores the value of the
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speculation parameters(Th,N). The algorithm first characterizes
the sensitivity of the CNN to the speculation performed in each
kernel in isolation. Then, it adjusts the speculation parameters for
all the kernels through a greedy search such that they cooperatively
minimize the computation while keeping the loss less thane.
Accordingly, we break the algorithm into two main stages (i.e.,
the profiling and the optimization stage) as follows:
Profiling stage.FunctionKernelProfilingPass in Algorithm 1 pro-
files the number of operations (op) and the accuracy loss (err)
corresponding to various values of(Thk

l ;N
k
l ) for the kernelk in

layerl. The exact mode of each kernel is also included in the pro-
filing results by setting (0,1) as one of the values for its(th;n). The
process is repeated for all the kernels in the CNN. The acceptable
profiling results in terms of the accuracy loss, are accumulated in
a list calledParamK. Each sub-listParamK[l ][k] in the listParamK
is sorted in ascending order based on the value of op.
Optimization stage. The optimization stage evaluates the
combined effects of kernels and determines the proper speculation
parameters for them. To avoid the complexity of evaluating the
combined effects, the optimization stage consists of two functions:
LocalOptimizationPass andGlobalOptimizationPass. The function
LocalOptimizationPass in Algorithm (1), aims to evaluate the
combined effects of kernels in each layer when the speculation
is performed in the layer in isolation. Then, the function identifies
a set of speculation parameters for each individual layer separately
that leads to acceptable accuracy with minimum operations.To do
this, the functionLocalOptimizationPass generates T configurations
for layer l such that in thet-th configuration, the speculation
parameters of kernelk is set tot-th profiled parameters from the
sorted listParamK[l ][k]. The configurations yielding an acceptable
accuracy are selected as the set of configurations for the layer l.
The acceptable configurations of all layers are populated in a list
calledParamL, and passed to the next function.

The second function,GlobalOptimizationPass, evaluates the
effect of speculation performed in all the layers simultaneously and
adjusts their speculation parameters with respect to the cross-layer
effect on the classification accuracy and computation reduction.
The output of the function is the final speculation parameters for
all the kernels in the CNN which is stored in the listParamCNN.
To find the final parameters, the function first initializes the
ParamCNN by setting the speculation parameters of each layer
l to ParamL[l ][0]. This initialization leads to the maximum
computation reduction given the configurations stored inParamL.
However, the accuracy loss obtained by the initial setting may
not be acceptable. In case of meeting the desired accuracy, the
current parameters inParamCNN is returned. Otherwise, the
parameters are adjusted iteratively until the accuracy loss becomes
less thane. For adjusting the parameters, in the next iteration,
those parameters are of interest that lead to small increasein the
number of operations while large improvement in the classification
accuracy. Hence, we define a merit value as� Derr=Dop, where
the larger theDerr and the smaller theDop are, the larger the
merit is. Accordingly, the functionGlobalOptimizationPass selects
the configuration with the maximum merit value among all

the configuration inParamL and updates the corresponding
speculation parameters in the listParamCNN.

V. ARCHITECTUREDESIGN FORSNAPEA

SnaPEA provides an accelerator architecture in order to effi-
ciently execute the CNN with the transformed convolution opera-
tions. Modern CNNs consist of several back-to-back layers includ-
ing convolution, ReLU activation, pooling, and fully-connected.
To provide an end-to-end solution, the accelerator architecture
consists of several units to execute the computation of all layers in
the CNN. In order to efficient execution of CNNs, the architecture,
specifically, targets to optimize the hardware of the convolution
layers because of the following reasons. The first reason isthat
the computation of the convolution layers dominates the overall
runtime of modern CNNs [2], [3], [7]–[10]. The second reason
is to execute the convolutions with the reordered weights and to
support the predictive early activation at the hardware level. To
perform the computations of the fully-connected layers, the same
hardware unit designed for the convolution layers is employed.
The fully-connected layers are mainly used to perform the actual
classification. CNNs usually have much smaller number (i.e. one or
two) of fully-connected layers compared to the convolutionlayers
at the final stage of the network. For example,GoogleNet has 57
convolution layers and onlyonefully-connected layer. On average,
the computation of fully-connected layers accounts for� 1% of
the total number of computations performed in CNNs [2], [3], [8].
Therefore, using the same hardware unit for the fully-connected
layers has virtually no impact on the total runtime of the CNNs.
Finally, the SnaPEA architecture consists of dedicated units to
support the computations of ReLU activation and pooling layers
as well.

Figure 6(a) illustrates the high-level block diagram of the
proposed accelerator architecture. The accelerator consists of a 2D
array of identical Processing Engines (PEs). Each PE is equipped
with an input and output buffer that communicates with the
off-chip memory. The weights of kernels and the inputs—coming
from an off-chip memory—are stored in the dedicated buffers
within each PE. In the following, we explain each unit of the
accelerator architecture in more details.
Processing Engine (PE).Figure6(b) depicts the microarchitec-
ture of one PE in the SnaPEA architecture. Each PE comprises
multiple compute lanes, a weight and index buffer, an input/output
buffer, and multiple Predictive Activation Units. Each compute
lane consists of one dedicated Multiply-and-Accumulate (MAC)
unit and one Predictive Activation Unit (PAU). The weight, index,
and input/output buffers are shared across all the compute lanes
within each PE. The computation of a convolution layer in each PE
starts upon receiving a block of input features, their corresponding
weights, and the weight indices from the off-chip memory. Inevery
cycle, the PE controller reads one weight value from the weight
buffer and broadcasts it to all the compute (MAC units) lanes. The
PE controller also reads one weight index from the index buffer
and sends the fetched index to the input buffer. Upon receiving
the index, the input buffer reads a set of values (one value per
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(b) PE Microarchitecture
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(a) Block Diagram of SnaPEA Architecture
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Figure 6: (a) The overall structure of the SnaPEA architectu re and its multilevel memory hierarchy, containing an off-c hip memory and a distributed on-chip buffer
for input and outputs. (b) The microarchitecture of each PE. The weights are shared across the compute lanes.

each MAC unit) and sends them to the MAC unit for processing.
Each compute lane is dedicated to perform all the computations
of oneconvolution window. That is, each MAC unit performs
the multiplication of one input and weight for each convolution
window and sends the results to the accumulation register. The
accumulation register accumulates the partial sums for each
convolution window. At the same time, the Predictive Activation
Unit (PAU) checks the values of the partial sums to determine
whether further computations for each convolution window is
required. If the PAU determines that no further computations for
a convolution window is required, it data gates the corresponding
multiplier and accumulator to save energy. This process continues
until either all the computations for the current convolution window
are performed or the PAU determines to apply the activation early.
Weight and index buffers.The weight buffer contains the weight
values of the convolution kernels in the pre-determined order
(See SectionIV). The weights are ordered offline and loaded
into the memory with the proper ordering. Since the orderingof
the weights are changed, we also need to add an index buffer to
properly index the input buffer. This index is used to load a value
from the index buffer. In every cycle, the controller fetches one
weight from the weight buffer and broadcasts it to all the compute
lanes. Simultaneously, the controller reads an index and sends it to
the input buffer to read the corresponding input value. The input
buffer delivers the inputs to each compute lane to perform one
multiplication for adjacent convolution windows.
Input/Output Buffers. The input buffer holds a portion of input
data for each convolution layer. Upon completion of all the
computations, the results are written into the output buffer. We use
one physical buffer for inputs and outputs. However, the buffer
is logically divided into two sub-buffers for holding the input and
output data of each layer. The logical partitioning allows us to use
each of the sub-buffers as an input or an output buffer. The results
of a layerl stored in the output buffer may be used by the next
layerl + 1 in . In this case, the data of each sub-buffers are logically
swapped without wasting additional cycles for data transfers.
Predictive Activation Unit (PAU). Figure 7 illustrates the
microarchitecture of the Predictive Activation Unit (PAU). One
PAU unit is added to each compute lane to support the convolution

operations in the exact and predictive mode. Performing the
convolution operations in the exact mode only requires to check
the sign of the partial sum value during the MAC operations with
the negative weights. Accordingly, in the exact mode, the signal
Predict is set to zero which allows the sign-bit of the partial sum
stored in the registerAcc Regto determine the termination of the
convolution operations. Once the sign-bit becomes one, thesignal
terminateis asserted and notifies the controller to terminate the rest
of computations for the underlying convolution window.

In the predictive mode, the sign of the convolution output is
speculated through the threshold value (th) and its associated num-
ber of operations (n) which are statically determined through the
software part (See Algorithm1). To perform speculation, PAU first
checks the partial sum value, coming from the accumulator register,
with a threshold value after a pre-determined number of MAC
operations. At this time, the controller sets the signalPredictto one.
If the partial sum value is less than the pre-determined threshold
value, PAU predicts that the final value of this convolutionwindow
will eventually become negative. In this case, the PAU performs
the following tasks: (1) notifies the controller that no further
computations are required for this convolution window and (2)
performs the early ReLU activation and sends zero to the output
buffer. If the partial sum value is larger than the pre-determined
threshold, the compute lane continues the computations forthe
convolution window normally until it reaches the negative weights.
The next check on the partial sum starts upon starting the MAC
operations with the negative weights. Here, the signalPredict is
de-asserted, and PAU periodically performs a simple one-bit sign
check on the partial sum values after each MAC operations, similar
to the process mentioned in the exact mode. Once the sign-bit
becomes one, the PAU terminates the convolution operationsof
the current window and sends a zero value to the output.

The mechanism of dynamically checking the partial sum values
might lead to idle computation lanes. These computation lanes
remain idle until the rest of the lanes finish the computations of
their assigned convolution window. Accordingly, increasing the
computation lanes may result in making more lanes idle despite
providing higher parallelism between the convolution windows.
In SectionVI, we evaluate the effect of increasing computation
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lanes on the idle cycles and their effects on the performanceand
energy savings.
Pooling unit. Once the computations of a group of convolution
windows complete, the PE performs the pooling operation on the
results. Once done, the PE writes the results back into the output
buffer. These results are either used in the computations ofthe
next layers of CNNs or written back to the off-chip memory, if
no further computations is required.
Organization of PEs.As shown in Figure12, the SnaPEA archi-
tecture contains multiple identical PEs organized in a 2D array.
The PEs are logically grouped bothverticallyandhorizontally. The
input data are partitioned between the horizontal PEs and the ker-
nels are partitioned between the vertical PEs. The PEs in thesame
horizontal and vertical groups work on the same portion of the in-
put data and kernels, respectively. Before the computationstarts, a
portion of input data are broadcasted to all the PEs within the same
horizontal group. Similarly, one or more kernels are broadcasted to
the PEs within the same vertical group. After the input and kernel
data distribution, the PEs start and proceed their computations
independent from other PEs. Once the computations for all the
PEs within the same horizontal group end, the on-chip buffer
delivers the next portion of input data. In this partitioning, some of
the PEs may finish their computations earlier than other PEswithin
the same horizontal group. These PEs remain idle until all the other
PEs complete their computations for all the assigned kernels and in-
put data portion. This synchronization mechanism reduces the cost
of multiple data broadcasting among the PEs while having a small
impact on the performance. We evaluate the impact of this synchro-
nization mechanism in SectionVI-B by analyzing the sensitivity
of performance to the number of compute lanes per each PE.

VI. EVALUATION

A. Methodology

Workloads. We use several popular medium to large scale dense
CNN workloads. We also includeSqueezeNet [6] that maintains
AlexNet-level accuracy with50� fewer parameters through a
static pruning approach. The fewer parameters inSqueezeNet
are attained using an iterative pruning and re-training of the
convolution weights. TableI summarizes the evaluated networks
and some of the most pertinent parameters such as model size,
number of convolution layers (Conv.), number of fully-connected
layers (FC), and the baseline classification accuracy. In all of the
evaluations, we useILSVRC-2012[1] validation dataset.
System setup.We useCaffe v1.0 [11] to run the pre-trained
networks on a GPU. We compileCaffe usingNVCC v8.0.62and

Table I: Workloads, their released year, model size, number of convolution
(Conv. ) and fully-connected ( FC) layers, and baseline classification accuracy.
The model size shows the size of weights in Megabytes.

Network Year
Model Size 

(MB)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

2012
2015
2016
2014

224
54
6

554

# of Layers
Conv. FC

ClassiÞcation 
Accuracy

5
57
26
13

3
1
1
3

72.6%
84.4%
74.1%
83.0%

Table II: SnaPEA and EYERISS [2] design parameters and area breakdown.

P
E

# Compute Lanes / PE
Partial Sum Register
Input Register
Weight Bu ! er
Index Bu ! er
Input / Output RAM
Predictive Activation Units

A
cc

l. Number of PEs
Global Bu ! er

SnaPEA EYERISS

Size Area (mm 2) Size Area (mm 2)

4 0.012 1 0.003
N/A 0 48 B 0.002
N/A 0 24 B 0.001

0.5 KB 0.014 0.5 KB 0.014
0.5 KB 0.007 N/A 0
20 KB 0.250 N/A 0

4 0.008 N/A 0

64 18.62 256 4.94
N/A 0 1.25 MB 12.9

Total Area 18.6 mm 2 17.8 mm 2

GCC v4.8.4with maximum architecture-specific and compiler
optimizations enabled. We configure Caffe to useNvidia cuDNN
v6.0, a highly tuned GPU-accelerated deep neural network library.
Training/testing datasets.To learn the threshold values and
their associated set of operations for each kernel, we implement
Algorithm 1 through updating the data of convolutional layers in
Caffe v1.0. We uniformly sample a subset of images from each of
the 1,000 classes inImageNet[1] to obtain the training and testing
datasets for the proposed algorithm. The uniform sampling among
all the classes enables us to cover images from distinct classes
during the training and testing phases of Algorithm1.
Architecture design and synthesis. We implement the
microarchitectural units of the proposed architecture including the
controllers, PEs, predictive activation unit (PAU), and registers
in Verilog. We useSynopsys Design Compiler (L-2016.03-SP5)and
a TSMC 45-nmstandard-cell library to synthesize the proposed
architecture and obtain the area, delay, and energy numbersof the
logic hardware units.
SnaPEA and baseline architecture configurations.In this
paper, we explore an8� 8 array of PEs in SnaPEA, each with
four compute lanes, with a total of256 MAC units. However, the
SnaPEA architecture can be scaled up to larger numbers of PEs.
TableII lists the major architectural parameters of the SnaPEA
design. We add a weight buffer and an index buffer, each 0.5KB
per each PE. Both weight and index buffers are shared across all
the compute lanes within each PE. Each PE is also equipped with
a 20KB buffer, that is evenly divided between input and output.
The total capacity of the buffers therefore is 1.25MB. Similar to the
weight and index buffers, both input and output buffers are shared
across all the compute lanes within a PE. Sharing the on-chip
memories across multiple PEs enables us to reduce the overhead
of index buffers. We size the input and output buffer so that the
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of deep convolutional neural networks in order to effectively
eliminate the ineffectual data transfers and computations.

VIII. C ONCLUSION

Traditionally, layers of deep neural networks have been thought
to work in separation while handing each other their results. How-
ever, our work took a disparate approach in considering the most
common sequence of layers in emerging deep networks to reduce
the amount of computation. As such, SnaPEA has devised a pre-
dictive early activation that operates in two distinct modes, namely
exact and predictive mode. In the exact mode, in which the nominal
classification accuracy remains untampered, SnaPEA uses acom-
bination of static re-ordering of the weights and low-overhead sign
check to determine when to terminate the computation. SnaPEA
further improves the performance and efficiency of convolution
operations in the predictive mode by speculatively cuttingthe com-
putation of convolution operations if it predicts its output is nega-
tive, immediately applying activation. Compared to a recent CNN
accelerator, SnaPEA in the exact mode yields 28% speedup (max-
imum of 74%) and 16% (maximum of 51%) energy reductions
across various modern CNNs without affecting their classification
accuracy. With 3% loss in classification accuracy, on average,
67.8% of the convolutional layers operate in the predictivemode,
and the average speedup and energy saving across these layers are
2.02� and 1.89� , respectively. The significant gains due to the
computation and memory access reduction across several modern
CNNs show the effectiveness of our approach that conjoins runtime
information and algorithmic insights into a unified accelerator.
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